The compound you described, 1-[9-[(4-fluorophenyl)methyl]-9-azabicyclo[3.3.1]nonan-3-yl]-3-(2-phenylphenyl)urea, is a complex organic molecule with a specific structure. Its importance lies in its potential as a **pharmaceutical agent**, specifically for the treatment of **neurological disorders**.
Here's a breakdown of its components and their significance:
* **9-Azabicyclo[3.3.1]nonan-3-yl:** This is a bicyclic ring system with a nitrogen atom at the 9th position. It's a common scaffold in many pharmaceuticals, particularly those acting on the central nervous system.
* **(4-Fluorophenyl)methyl:** This is a phenyl ring substituted with a fluorine atom at the 4th position, linked to a methylene group. The fluorine atom can influence the molecule's pharmacokinetic properties, affecting its absorption, distribution, metabolism, and excretion.
* **3-(2-phenylphenyl)urea:** This part of the molecule contains a urea moiety linked to a phenyl ring substituted with another phenyl ring at the 2nd position. The urea group is often found in drugs that interact with biological receptors.
The compound's specific structure and composition suggest it might possess interesting pharmacological properties, potentially acting as:
* **Aligand for specific receptors:** The complex molecular structure could interact with particular receptors in the brain, influencing neurotransmitter signaling pathways.
* **An inhibitor of enzymes:** The molecule might bind to and inhibit the activity of enzymes involved in neurological processes, like those involved in neuroinflammation or neurodegeneration.
* **A modulator of ion channels:** Its structure might allow it to interact with ion channels in the cell membrane, affecting the flow of ions and potentially influencing neuronal activity.
**Why is it important for research?**
This compound is important for research because:
* **It offers a potential therapeutic lead:** The combination of its structural features suggests it could be a promising lead compound for the development of new drugs for neurological disorders.
* **It may elucidate new biological mechanisms:** Exploring the compound's effects on different biological targets could reveal new mechanisms underlying neurodegenerative diseases or neuropsychiatric disorders.
* **It can serve as a starting point for further optimization:** The compound's structure can be modified to improve its potency, selectivity, and pharmacokinetic properties.
However, it's important to note that this compound is still in the early stages of research. Further preclinical studies are needed to evaluate its safety and efficacy in animal models.
In conclusion, 1-[9-[(4-fluorophenyl)methyl]-9-azabicyclo[3.3.1]nonan-3-yl]-3-(2-phenylphenyl)urea holds promise as a potential therapeutic agent for neurological disorders, but further investigation is required to determine its true potential.
ID Source | ID |
---|---|
PubMed CID | 3217272 |
CHEMBL ID | 1360514 |
CHEBI ID | 123297 |
Synonym |
---|
MLS000688774 |
smr000285850 |
CHEBI:123297 |
1-[9-[(4-fluorophenyl)methyl]-9-azabicyclo[3.3.1]nonan-3-yl]-3-(2-phenylphenyl)urea |
HMS2660L17 |
CHEMBL1360514 |
Q27213005 |
Class | Description |
---|---|
piperidines | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
glp-1 receptor, partial | Homo sapiens (human) | Potency | 6.3096 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 21.8528 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 70.7946 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
geminin | Homo sapiens (human) | Potency | 19.7347 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 25.1189 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 3.1623 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
Inositol monophosphatase 1 | Rattus norvegicus (Norway rat) | Potency | 1.7783 | 1.0000 | 10.4756 | 28.1838 | AID1457 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |